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Abstract

Several Continuous Random Walk (CRW) models were constructed to predict turbulent particle diffusion based on
Eulerian statistics that can be obtained with Reynolds-Averaged Navier Stokes (RANS) solutions. The test conditions
included a wide range of particle inertias (Stokes numbers) with a near-wall injection (y+ = 4) in a turbulent boundary
layer that is strongly anisotropic and inhomogeneous. To assess the performance of the models, the CRW results were
compared to particle diffusion statistics gathered from a Direct Numerical Simulation (DNS). In particular, comparisons
were made with transverse concentration profiles, root-mean-square of particle trajectory coordinates, and mean trans-
verse particle velocity away from the wall.

The results showed that accurate simulation required a modified (non-dimensionalized) Markov chain to handle the
large gradients in turbulence near the wall as shown by simulations with fluid-tracer particles. For finite-inertia particles,
an incremental drift correction for the Markov chain developed herein to account for Stokes number effects was critical to
avoiding non-physical particle collection in low-turbulence regions. In both cases, inclusion of anisotropy in the turbulence
model was found to be important, but the influence of off-diagonal terms was found to be weak. The results were generally
good, especially for long-time and large inertia particles.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Overview of turbulent diffusion of particles in boundary layers

Understanding the dynamics of a multi-phase system has long been an issue of scientific and engineering
interest. Of particular interest to this study is the numerical simulation of particle diffusion due to turbulence
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in the continuous phase, where the density of the particles is assumed to be much greater than the density of
the surrounding fluid. Let us first consider some relevant non-dimensional diffusion parameters for turbulence
that is isotropic and homogeneous: the particle integral-scale Stokes number (StK) is the ratio of particle relax-
ation time (sp) to a local turbulent integral time-scale (sK); the wall-based Stokes number (St+) is the ratio of
the particle relaxation time to the wall based time-scale ðvf=u2

sÞ; the drift parameter (c) is the ratio of particle
terminal velocity (Vterm) to the root-mean-square of the fluid fluctuation velocities ðu0f ; rmsÞ; and the particle
Reynolds number (Rep, term) based on the particle terminal velocity:
StK ¼
sp

sK
; Stþ ¼ spu2

s

vf

; c ¼ V term

u0f; rms

; Rep;term ¼
V termdp

vf

; ð1Þ
where dp is the particle diameter, vf is the fluid kinematic viscosity, qf is the fluid density, qp is the particle den-
sity, and
V term ¼
sp

g
¼

qpd2
p

18lf

: ð2Þ
For homogenous, isotropic turbulence (HIsT), Crowe et al. (1988) identified three distinct regimes of particle
diffusion based on the particle Stokes number. For very small Stokes number particles (StK� 1), the particles
have a very short relaxation time and follow the fluid motion closely and thus have similar mass diffusion as
that of the continuous-phase. For very large Stokes number particles (StK� 1), the particles have a very long
relaxation time and the turbulence only has a limited effect on the trajectories because the eddy-particle inter-
action time is not long enough to overcome the large inertia of the particles and therefore particle mass dif-
fusion is significantly less than that of the continuous phase. For intermediate Stokes number particles,
(StK � 1), the particles do not follow the fluid exactly, however there is a noticeable effect on the particle veloc-
ity and trajectory due to the turbulent eddies. In general, this leads to a monotonic reduction in turbulent dif-
fusion as particle Stokes number increases.

For inhomogeneous turbulence (where the average turbulent statistics have significant spatial variations),
the physics is more complex. In particular, the gradient in the turbulent kinetic energy can cause changes in
particle diffusion. Kaftori et al. (1995) experimentally studied the motion of particles near the wall of a tur-
bulent boundary layer and noted that particles with wall-based Stokes numbers of order unity (St+ � 1)
yielded high concentrations near the wall and was described as ‘‘wall-peaking’’. Young and Leeming (1997)
noted that this phenomenon is due to ‘‘turbophoresis’’ (a convective drift of particles down gradients of
mean-square fluctuating velocity) and could be qualitatively described with an Eulerian model as a function
of a wall-based Stokes number (St+). These gradients have also been found to be important for particle dif-
fusion in pipe flows and shear layers such that an accurate methodology to predict this behavior is needed for
multi-phase engineering systems.

1.2. Methodologies for simulation of particle diffusion

Numerical simulation of a two-phase flow system can either be accomplished by treating the particles in an
Eulerian or a Lagrangian frame, each has specific advantages and disadvantages as noted by Loth (2000). In
this research, the Lagrangian approach is utilized because it allows for the crossing trajectories effect and
particle–wall reflection phenomena. The latter is especially important herein because wall collisions can be
a major factor in the resulting particle distribution for the turbulent boundary layer simulations.

For the treatment of the continuous fluid, it is ideal to describe all the spatial and temporal scales down to the
Kolmogorov scales for turbulent flows, and this approach is termed Direct Numerical Simulation (DNS).
However, it is not practical to obtain this resolution for many engineering systems since the computational
resources required rapidly increases with Reynolds number. A common approach is to instead predict only
the time-averaged velocity and turbulence properties using a Reynolds Averaged Navier Stokes (RANS)
approach, which requires much less computational resources than DNS. To transform such statistics into
instantaneous fluid fluctuation velocities seen by the particles in a Lagrangian frame, a Continuous Random
Walk (CRW) model can be used along with a statistically large number of particles to obtain mean particle
diffusion. This stochastic model correlates the velocity fluctuations from the previous time-step through a
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Markov chain (based on a Langevin equation), with the inclusion of a random variable. These types of Markov
chains are computational fast to evaluate and simple to program. These chains can also be used to model the
sub-grid stress fluctuations for Lagrangian particle trajectories for Large Eddy Simulation as indicated by Loth
(2000).

Markov chains are based on Langevin equations, such as
du
dt
¼ �auðtÞ þ knðtÞ; ð3Þ
where the continuous random variable, n(t), can be specified to have a Gaussian distribution with a variance of
unity. The Markov chain for a homogeneous and isotropic flow developed Legg and Raupach (1982), based
on (3), is
uðt þ DtÞ ¼ uðtÞ exp
�Dt
sL

� �
þ 1� exp

�2Dt
sL

� �� �1=2

rðtÞnðtÞ: ð4Þ
However, Wilson et al. (1981) suggested using a normalized Langevin equation of the form
d

dt
u
r

� �
¼ �a

u
r

� �
þ knðtÞ ð5Þ
to allow for inhomogeneous turbulence. Iliopoulos and Hanratty (1999) utilized this normalized Langevin
equation in their analysis of near-wall fluid-tracer diffusion and the resulting normalized Markov chain is
uðt þ DtÞ ¼ exp
�Dt
sL

� �
uðtÞ rðt þ DtÞ

rðtÞ þ 1� exp
�2Dt
sL

� �� �1=2

rðt þ DtÞnðtÞ: ð6Þ
A key issue in using a Markov chain in combination with inhomogeneous turbulence is that the inhomogene-
ity of the turbulence needs to be included in the Markov chain or non-physical, numerical particle diffusion
occurs. MacInnes and Bracco (1992) investigated the performance of a CRW model, similar to the one of Legg
and Raupach (1982), in 2-D inhomogeneous turbulent flows of a turbulent mixing layer and axisymmetric jet,
and determined that a drift correction of
dv0f ¼ sK 1� exp
�Dt
sK

� �� �
o

oy
ðv0fv0fÞ ð7Þ
should be included in the Markov chain. According to Bocksell and Loth (2001), this can also be expressed as
du0f i
¼ Dt

Du0f i

Dt

 !
¼ Dt u0f j

ou0f i

oxj

 !
; ð8Þ
which is equivalent to (7) to first order. Not including this drift correction, errors of up to 500% for the particle
number concentration were found (while inclusion reduced the error to around 10%).

Iliopoulos and Hanratty (1999) investigated the turbulent dispersion of fluid-tracers released at y+ = 40 in a
turbulent channel flow and used the modified Langevin equation (including a drift correction) to obtain veloc-
ity fluctuations along a particle trajectory. The random walk model was compared to DNS diffusion results for
these zero-inertia (fluid-tracer) particles, and in general it was found that the performance was reasonable.
More recently, Mito and Hanratty (2005), investigated the effect of gravitational settling on particle concen-
tration profiles in a channel flow. The modified Lagrangian equation was similarly utilized for a range of finite
inertial particles, however the drift correction was based on the tracer particle formulation and did not include
finite inertia effects.

This research addresses the effect of particle inertia on the drift correction where no previous studies (to the
authors knowledge) have derived the drift correction for finite-inertia particles. In addition, no CRW simula-
tions have evaluated random-walk model performance with a near-wall release of particles (such as in the vis-
cous sub-layer) where the anisotropic and inhomogeneous effects are the strongest. The current study seeks to
address these two issues since they can be important for finite-size particles injected or ablated near the surface
of a turbulent boundary layer or in other flows that are strongly inhomogeneous. In addition, a second
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objective is to investigate the level of flow detail needed for successful particle diffusion prediction. Therefore,
Markov chains will be based on increasing levels of sophistication for the Eulerian mean flow statistics: iso-
tropic turbulence, anisotropic turbulence for the three directions only (neglecting off-diagonal terms), and
anisotropic turbulence with the full stress-tensor (including off-diagonal terms).
2. Methodology

2.1. DNS solution and RANS-like statistics

The continuous phase solution for the turbulent boundary layer was obtained from DNS of the incom-
pressible Navier–Stokes equations, assuming the particle concentration is dilute (does not affect the carrier
phase) and negligible particle–particle interactions. The DNS code was developed by Spalart and Watmuff
(1993) to simulate a three-dimensional, spatially developing boundary layer with no streamwise pressure
gradient. The method is spectrally accurate in the three spatial directions and second-order accurate in time.
The solution domain is semi-infinite over a flat, smooth surface with 0 6 x 6 Kx, �1 6 z 61, and
0 6 y 61, where x, z, and y represent the streamwise, spanwise, and transverse directions and where Kx is
the streamwise domain length.

The Reynolds number of a turbulent boundary layer can be based on the large-scale parameters
(Red = U1d/mf), where d is the boundary layer thickness and U1 is the free-stream velocity. For the present
Reynolds boundary number (Red = 4500), grid-independent results were obtained for a domain discretized by
256 nodes in the stream direction, 96 in the span direction, and 55 in the transverse direction for a total of
1,351,680 nodes in the three-dimensional mesh. Spatial evolution aspects and time integration details are given
by Bocksell (2004) and Dorgan (2003).

Eulerian time-averaged/spanwise-averaged statistics of the fluid properties are shown in Fig. 1 for trans-
verse profiles at x = Kx/3 of the mean velocity (in wall units) as well as turbulent kinetic energy and velocity
fluctuations (normalized by u2

s). For the mean velocity profile, there is evidence of the viscous sublayer below
y+ � 20 and a transition to a logarithmic curve is seen by y+ � 50. The boundary layer edge is located at
roughly y+ � 270 (or Res = 270 where Res is the Reynolds number based on d and us) and the common
‘‘law of the wall’’ curves are included for the purpose of comparing the data to high Reynolds number bound-
ary layers. The peak values for k and v0f ;rms results are similar in magnitude to experimental results of Klebanov
reported by Hinze (1975) at Res = 2800, though at somewhat larger y+ locations. These Eulerian statistics,
along with the full Reynolds-stress tensor and the turbulent dissipation (e), were used to construct a typical
RANS-like turbulent boundary layer flow solution by Bocksell (2004).

Based on HisT flow, Hinze (1975) utilized asymptotic analysis and dimensional arguments that led to
approximations for the Lagrangian turbulent time and length scales as functions of the turbulent kinetic
energy and dissipation. However, as noted by Bocksell and Loth (2001), the Lagrangian turbulent length
and time scales (sK and K) in a boundary layer are not approximated sufficiently by the HIsT assumption
and instead depend on distance from the wall (y+). Therefore, the DNS was utilized to obtain these values
across the boundary layer. To obtain this information, 4000 fluid-tracer particles (scalars) were released at
45 locations in the wall-normal direction within the boundary layer. The following Lagrangian autocorrela-
tions were evaluated at every time step by ensemble-averaging over all the fluid-tracer particle paths,
RuuðsÞ ¼
u0fðtÞu0fðt þ sÞ

u0fðtÞu0fðtÞ
; RvvðsÞ ¼

v0fðtÞv0fðt þ sÞ
v0fðtÞv0fðtÞ

; and RwwðsÞ ¼
w0fðtÞw0fðt þ sÞ

w0fðtÞw0fðtÞ
: ð9Þ
With these autocorrelations, sKi is obtained as a function of y-release point from
sKu ¼
Z T

0

RuuðsÞds; sKv ¼
Z T

0

RvvðsÞds; and sKw ¼
Z T

0

RwwðsÞds; ð10Þ
such that T is many times larger than the integral turbulent time scale. These time scales along with the root-
mean-square of the turbulent fluctuations are used to compute the anisotropic integral turbulent length scale
as
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Fig. 1. DNS flow statistics at the particle injection plane, in wall units: (a) mean velocity profile, (b) turbulent kinetic energy profile, and
(c) turbulent auto-correlation profiles.
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Ki ¼ CKu0rmsj
sKidij: ð11Þ
Thus both Ki and sKi were obtained as functions of distance from the wall for the turbulent boundary layer (as
shown in Fig. 2) and were then used as a look-up table for the CRW model. Note that the estimated Lagrang-
ian time scale of Kallio and Reeks (1989) for a turbulent boundary layer shows a very similar behavior to the
DNS obtained time-scales, indicating that the length and time scales can be reasonably obtained from Eule-
rian statistics.
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Fig. 2. (a) Lagrangian fluid time-scale profiles from DNS, (b) Lagrangian fluid time-scale component and average value profiles from
DNS, and (c) Lagrangian fluid length-scale profiles from DNS.
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2.2. Particle equation of motion

The particle equation of motion for both the DNS and CRW simulations is
mp

dupi

dt
¼ 3plfdpðuf i � upi

Þ þ mpgi; ð12Þ
where mp is the particle mass, uf i is the continuous-phase velocity vector, upi
is the particle velocity vector, and

gi is the gravity vector. This equation assumes that the particle density is significantly greater than the fluid
density so that other forces, such as the lift, the stress gradient, and the Basset history forces are negligible.
Additionally, (12) employs a Stokesian drag to allow understanding of the fluid physics without introducing
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the non-linearity and empiricism associated with high Reynolds number expressions. Including the particle
relaxation time of (2) into (12) results in
Fig. 3
interm

Table
Particl

Std

10�4

10�3

10�2

0.1
1

dupi

dt
¼ uf i � upi

sp

þ gi: ð13Þ
The non-dimensional equation of motion utilizing sp as the reference time scale and u0f ;rms as the reference
velocity scale is integrated by both the DNS and CRW simulations using a modified version of the exponen-
tial-Lagrangian method first described by Barton (1996) and later generalized and improved by Bocksell
(2004). This method is an Adams–Bashforth multistep integration scheme, implemented in a predictor–correc-
tor fashion that is second-order accurate in time.

The particles are injected at every time step at x = Kx/3 and y+ = 4 evenly distributed over the z-direction
(50 spanwise locations as shown in Fig. 3). An elastic reflection is imposed at y+ = 1 for all downstream wall
interactions. The time step used for the DNS (both fluid and particle simulations) was constant for all cases
and appears in Table 1 in various non-dimensional forms. The particle paths are computed and statistical
information is recorded along the trajectories and fluxes (see Bocksell (2004) for relative particle concentration
profiles) at various downstream planes until the last downstream plane, which is 15 boundary layer thicknesses
from the injection location (x = Kx/3 + 15d). In order to understand how inertia influences particle diffusion
in a boundary layer, five different particle inertias were selected with Stokes number varying from Std = 10�4

to Std = 1, all at a constant c of 10�2 (with Vterm directed away from the wall). The low value of c ensures that
the terminal velocity is small compared to the fluid velocity fluctuations so that inertia and turbulent diffusion
effects dominate the particle dispersion (as opposed to gravity). The conditions for the non-tracer particle sim-
ulations are also shown in Table 1 in terms of inner Stokes number (St+) and outer Stokes number (Std). Since
the time-scale of the turbulence varies with distance from the wall, the effective instantaneous Stokes number
Periodic Boundary

X

Z

Fifty injectors, 
evenly distributed 
across the span at

y+ = 4 

Final collection 
plane 

(all y+ values) 

Periodic Boundary

x/δ = 0

z/δ = 0

z/δ = 5.56

x/δ = 15

. Illustration of the particle injection locations as well as the particle tracking domain for the DNS. Note that there are five
ediate collection planes (x/d = 0.5, 1, 2, 4, 8).

1
e conditions for the DNS particle simulations

hStKi St+ Dt
sp

Dt
sþ

Dt
sd

7.8·10�4 0.027 6.6·10�2 0.57 0.0011
7.8·10�3 0.27 6.6·10�3 0.57 0.0011
8.3·10�2 2.7 6.6·10�4 0.57 0.0011
1.2 27 6.6·10�5 0.57 0.0011
13.9 270 6.6·10�6 0.57 0.0011



T.L. Bocksell, E. Loth / International Journal of Multiphase Flow 32 (2006) 1234–1253 1241
will vary depending on the particle location. By recording the observed integral fluid Lagrangian time scale
(sK) along the particle path, an average local particle Stokes number was obtained, hStKi = sp/hsKi, for each
class of particles. As expected, the local Stokes number is bounded by Std and St+, but tends to be closer to Std
for the smallest particles. This is consistent with the result that the smallest particles diffuse the farthest away
from the wall (as will be shown) where the outer Stokes number tends to govern the particle dynamics.

The DNS results are summarized in Fig. 5 in terms of the outer Stokes number and plotted a semi-log scale
for y+ to highlight the near-wall aspects. Fig. 4a–c show bullet plots of tracer particles (StK = 10�4 and
c = 10�2) at three downstream locations (x/d = 1, 4, and 15), where each dot represents a distinct tracer
particle’s location as it crossed each x-plane. From the bullet plot at the x/d = 1 plane (Fig. 4a), the spatial
coherency of the turbulence is evident as the particles are dispersed by the large-scale structures of the bound-
ary layer yielding regions of high concentration associated with specific boundary layer ejection events. As the
particles travel further downstream, this coherence disappears so that at x/d = 15 (Fig. 4c), there is little (if
any) structure present in the bullet plot indicating that this downstream location is sufficient to provide fully
Fig. 4. Bullet plot of fluid-tracers (St = 0) at three downstream locations from DNS: (a) x/d = 1, (b) x/d = 4, (c) x/d = 15 along with
(d) the resulting concentration profile.
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diffuse conditions. Fig. 4d shows the resulting averaged particle concentration profiles for in wall units at this
location, where it can be seen that the initial near-wall concentration is successively transported from the wall
by turbulent diffusion. Further details of the particle dispersion physics are given in Dorgan (2003).

2.3. Investigated CRW methods

One of the main goals of this research is to evaluate the performance of the CRW model with regard to the
amount of turbulence information available for successively increasing fluid physics information. Therefore,
conventional and normalized Markov chains are described here for three different types of simulations: (1)
isotropic turbulence, (2) anisotropic turbulence but no Reynolds stress, and (3) anisotropic turbulence with
Reynolds stresses. For consistency, the time-scale treatment, the velocity fluctuation treatment, and the incre-
mental drift correction treatment were all identical in terms of the level of turbulence information resulting in
three types of CRW simulations to evaluate the importance of the anisotropy. These three simulation types are
summarized in Table 2. Note that the CRW time-step for the particle trajectories was 3.3 times larger than the
DNS time-step, which was sufficient for the presented statistical properties.

The conventional and normalized one-dimensional Markov chains for isotropic turbulence were presented
in (4) and (6). The diagonal CRW models that utilize only the diagonal of the Reynolds stress tensor (ru, rv,
and rw) are (conventional):
Table
Summ

Name

Isotrop
Diago
Full
uiðt þ DtÞ ¼ dijkujðtÞ exp
�Dt
sLk

� �
þ 1� exp

�2Dt
sLk

� �� �1=2

dijklrujðtÞnlðtÞ ð14Þ
and similarly the normalized Markov chain is
uiðt þ DtÞ ¼ dijklmujðtÞ exp
�Dt
sLk

� �
r�ul
ðt þ DtÞ
rumðtÞ

þ 1� exp
�2Dt
sLk

� �� �1=2

dijklr
�
uj
ðt þ DtÞnlðtÞ: ð15Þ
Considering the full Reynolds stress with the boundary layer approximations results in only the u–v cross-
correlations as non-zero. Thus the resulting form for the conventional Markov chain for the ‘‘full’’ simulations
is
uðtþDtÞ
vðtþDtÞ
wðtþDtÞ

2
64

3
75¼

ku 0 0

0 kv 0

0 0 kw

2
64

3
75

uðtÞ
vðtÞ
wðtÞ

2
64

3
75þ

ru

ffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

u

q
0 0

0 rv

ffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

v

q
0

0 0 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

w

q

2
66664

3
77775

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
p

b 0

0 1 0

0 0 1

2
64

3
75

nu

nv

nw

2
64

3
75;

ð16Þ

where
ku ¼ exp
�Dt
sLu

� �
; kv ¼ exp

�Dt
sLv

� �
; kw ¼ exp

�Dt
sLw

� �
;

b ¼
Ruv 1� exp �Dt

sLu

� �
exp �Dt

sLv

� �h i
1� exp �2Dt

sLu

� �h i1=2

1� exp �2Dt
sLv

� �h i1=2
; and Ruv ¼

uv
rurv

:

ð17Þ
2
ary of types of CRW simulations

Turbulence type Time-scale type

ic uu ¼ vv ¼ ww ¼ 2K=3; uv ¼ 0 sLu ¼ sLv ¼ sLw

nal uu 6¼ vv 6¼ ww; uv ¼ 0 sLu 6¼ sLv 6¼ sLw

uu 6¼ vv 6¼ ww; uv 6¼ 0 sLu 6¼ sLv 6¼ sLw
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The resulting normalized Markov chain for the ‘‘full’’ simulations is
uðt þ DtÞ
vðt þ DtÞ
wðt þ DtÞ

2
4

3
5 ¼ ku 0 0

0 kv 0

0 0 kw

2
4

3
5

r�uðtþDtÞ
ruðtÞ 0 0

0 r�v ðtþDtÞ
rvðtÞ 0

0 0 r�wðtþDtÞ
rwðtÞ

2
664

3
775

uðtÞ
vðtÞ
wðtÞ

2
4

3
5

þ

r�uðt þ DtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

u

q
0 0

0 r�vðt þ DtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

v

q
0

0 0 r�wðt þ DtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

w

q

2
66664

3
77775

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
p

b 0

0 1 0

0 0 1

2
4

3
5 nu

nv

nw

2
4

3
5; ð18Þ
where ku, kv, kw, b and Ruv are the same as (17). The main difference between the conventional Markov chain
of (16) and the normalized Markov chain of (18) is the ratio of the root-mean-square of the velocity fluctu-
ations from the last time step and the next time step. Essentially this provides decorrelation in the time history
of the velocity fluctuation where gradients in the turbulence are large (near the wall). It is also noteworthy that
Mito and Hanratty (2005) utilize an anisotropic formulation of the Langevin equation that provides higher
order statistical information and fidelity.

2.4. Particle drift correction for finite-inertia particles

As noted in the introduction, a finite mass particle drift correction for both the conventional and normal-
ized Markov chains has been developed in this study. This correction is different than previous fluid-tracer
drift corrections since the total differential of the fluid velocity fluctuation along a particle trajectory includes
both the fluid and particle velocity fluctuations:
du0f i

dt
¼

ou0f i

ot
þ upj

ou0f i

oxj
: ð19Þ
Taking the Eulerian time-average results in
du0f i

dt
¼ upj

ou0f i

oxj
: ð20Þ
The goal is to estimate the right-hand-side correlation between the particle velocity and fluid fluctuation
velocity with particle characteristics and Eulerian fluid correlations. Starting with the particle equation of
motion (13) and introducing Reynolds averaging ðuf i ¼ uf i þ u0f i

Þ, results in
dupi

dt
þ upi

sp

¼
u0f i

sp

þ uf i

sp

þ gi

� �
: ð21Þ
Utilizing Laplace transforms, (21) becomes
upi
ðsÞ sþ 1

sp

� �
¼ upi

ð0Þ þ 1

sp

u0f i
ðsÞ þ 1

s
uf i

sp

þ gi

� �
; ð22Þ
where £ denotes the Laplace transform so that upi
ðsÞ ¼ £½upi

ðtÞ� and u0f i
ðsÞ ¼ £½u0f i

ðtÞ�.
Inversion results in the solution to the particle equation of motion in the time domain as
upi
ðtÞ ¼ upi

ð0Þ exp
�t
sp

� �
þ 1

sp

Z t

0

exp
r � t
sp

� �
u0f i
ðrÞdr þ uf i þ spgi

	 

1� exp

�t
sp

� �� �
: ð23Þ
The correlation of interest, upj
ou0f i

=oxj, is obtained from multiplying (23) by ou0f i
=oxj and time-averaging (not-

ing that ou0f i
=oxj ¼ 0 and nðtÞou0f i

=oxj ¼ 0) which results in
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upj
ðtÞ

ou0f i
ðtÞ

oxj
¼ upj

ð0Þ
ou0f i
ðtÞ

oxj
exp

�t
sp

� �
þ 1

sp

Z t

0

exp
r � t
sp

� �
u0f j
ðrÞ

ou0f i
ðtÞ

oxj
dr: ð24Þ
The correlation of u0f j
ðsÞou0f i

ðtÞ=oxj appearing in the above equation is simplified for locally homogeneous tur-
bulence by assuming a standard decorrelation form of
u0f j
ðsÞ

ou0f i
ðtÞ

oxj
¼ u0f j

ðtÞ
ou0f i
ðtÞ

oxj
exp

s� t
sK

� �
: ð25Þ
Substituting (25) into (24) and then integrating for the limit t!1, as discussed by Bocksell (2004), results in
the ‘‘finite-inertia incremental drift correction’’ as
upj

ou0f i

oxj
¼ u0fj

ou0f i

oxj

1

1þ StK

� �
: ð26Þ
This finite-inertia drift correction tends to the proper fluid-tracer correction (8) as the particle inertia becomes
negligible (StK! 0), while it tends to zero as the particle inertia becomes high (StK� 0). This latter limit is
consistent with the eventual elimination of the correlation between fluid and particle velocity fluctuations for
very large particles. Note that these limits would be observed even if a non-linear drag coefficient were used
such that (26) is expected to be at least qualitatively reasonable at high particle Reynolds numbers.

The finite-inertia drift correction for the normalized Markov chain is similarly obtained for the normalized
Langevin equation. The total differential of the normalized variable utilized in the normalized Langevin equa-
tion along a finite inertia particle is
d

dt

u0fk

rul

� �
dikl ¼ upj

o

oxj

u0fk

rul

� �
dikl: ð27Þ
Note that the term ðu0fk
=rulÞdikl, could be re-written as ðu0f i

=ruiÞ if there is no summation over the ‘‘i’’ index.
This equation is multiplied by oðu0fk

=rulÞ=oxjdikl, and after Laplace transformation analysis performed by
Bocksell (2004), the corresponding finite-inertia incremental drift correction is
upj

o

oxj

u0fk

rul

� �
dikl ¼ u0fj

o

oxj

u0fk

rul

� �
dikl

1

1þ StK

� �
: ð28Þ
Thus, for both the conventional and normalized Markov chains, the factor used to transform the particle–
fluid correlation to fluid–fluid correlations, 1/(1 + StK), is identical such that the same limits occur.

When implementing the incremental drift correction for the CRW simulations, the turbulence correlations
for the drift correction are treated in a consistent manner as for the rest of the Markov chain. For example, if
the time and length scales for the CRW simulation are assumed isotropic, then the turbulence correlations in
the incremental drift correction are also assumed isotropic (various forms of the tested CRW models are given
in Table 3). Next, the DNS results are presented to describe the basic turbulent diffusion features followed by
the CRW results where the various formulations are compared to the DNS statistics.
3
ary of the types of incremental drift velocities utilized for the CRW model

ype Markov chain Increment drift formula

ift Conventional and normalized du0f i
¼ 0

tracer Conventional du0f i
¼ Dtu0f j

ou0
f i

oxj

inertia Conventional
du0f i
¼ Dtu0f j

ou0
f i

oxj

1
1þSt

� �
tracer Normalized

du0f i
¼ Dtu0f j

ou
oxj

u0
fk

rul

� �
dikl

inertia Normalized
du0f i
¼ Dtu0f j

ou
oxj

u0
fk

rul

� �
dikl

1
1þSt

� �
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3. CRW results

3.1. Transverse concentration profiles

To test the drift corrections, fluid-tracer particles (mp 	 0, Std 	 0) were injected throughout the boundary
layer (from y = 0 to y > d) and by conservation of mass, the concentration profile should remain uniform as
they move downstream (in an averaged sense). Fig. 5a shows the results of the CRW simulations of this type
of tracer particle injection with isotropic turbulence and isotropic time scale using the conventional Markov
chain of (4). The ideal result is a uniform concentration as shown by the solid line, but there is a significant
0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
y/δ

C
/C

o

Exact

x* = 2

x* = 4

x* = 8

x* = 15

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
y/δ

C
/C

o

Exact

x* = 2

x* = 4

x* = 8

x* = 15

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
y/δ

C
/C

o

Exact

x* = 2

x* = 4

x* = 8

x* = 15

(a)

(b)

(c)

Fig. 5. Fluid-tracer particle concentration profiles for the turbulent boundary layer (injected uniformly at x* = 0, or x/d = 0) at four
downstream locations for the CRW model with: (a) conventional Markov chain with no drift correction, (b) conventional Markov chain
with conventional tracer drift correction, (c) modified Markov chain with modified tracer drift correction.
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Fig. 6. Schematic illustrating the history effect of the conventional Markov chain near the wall that results in a non-physical wall collision
compared to the true fluid particle path with a more rapid decorrelation (due to the presence of the wall).
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Fig. 7. Comparison of particle concentration profiles from DNS and CRW simulations for Std = 10�4 at x/d = 15 for with (a) fluid-tracer
incremental drift correction and (b) finite-inertia incremental drift correction.
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amount of wall-peaking such that the particle concentrations at the first point are off the chart (C/Co > 4.5).
Including the incremental drift correction for the conventional, isotropic Markov chain (see Table 3) substan-
tially reduces the non-physical peaks of particle concentration in the outer region of the boundary layer as
shown in Fig. 5b, but there is still significant wall-peaking (C/Co > 2.0). This case also yielded a high number
of non-physical wall collisions for the fluid-tracer particles (about 50 collisions for every 1000 particle
injected). Thus, there is an incorrect description of the CRW velocity perturbations for tracer trajectories
as particles approach the wall. To understand the genesis of the problem, consider the conventional Markov
chain (4). The fluctuation velocity at the next time step is based on the value of the fluctuation velocity at the
previous time step, and this ‘‘history’’ effect will influence the fluctuation value for a time duration of approx-
imately sK. However, for fluid-tracer particles moving towards the wall, conditions can arise so that this his-
tory effect non-physically drives the fluid particle into the wall and a collision results. A true fluid particle
should never bounce because of the wall boundary condition ðvf ¼ 0Þ and the Eulerian velocity fluctuation
ðv0frms
Þ approaches zero (quadratically) at the wall (see Fig. 1c). To see how this problem can readily occur

for the conventional Markov chain, consider a fluid particle approaching the wall and having a negative
(wall-ward) transverse velocity fluctuation such that jv0fðtÞj > sint=yp, as shown in Fig. 6. This situation is rea-
sonable since v0frms

is on the order of sK/y for 10 < y+ < 20 (Fig. 1c). In this case, there is a high probability that
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Fig. 8. Comparison of particle concentration profiles from DNS and CRW simulations for Std = 10�1 at x/d = 15 for with (a) fluid-tracer
incremental drift correction and (b) finite-inertia incremental drift correction.
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the fluid-tracer particle will improperly collide since the conventional Markov chain decorrelation rate will
generally be insufficient to reduce v0fðtÞ to zero before the particle arrives at the wall, and thus a large number
of non-physical collisions are recorded for tracer particles. This problem is rectified by using the normalized
Markov chain, as discussed below.

The normalized, isotropic Markov chain (6) is constructed from the normalized Langevin equation of (5),
which is simply a transformation from inhomogeneous turbulence to homogenous turbulence. It provides a
better model for the decorrelation as a particle moves from a region of high turbulence to a region of low tur-
bulence due to the presence of the ratio, r(t + Dt)/r(t), in (6). Application of this normalized Markov chain
yielded an order of magnitude reduction in wall collisions. This improvement is also reflected in Fig. 5c, which
shows the concentration profiles and it is evident that the CRW results are close to the exact solution through-
out the boundary layer. Because of this, all the CRW simulations shown hereafter utilize the normalized
Markov chain. Results utilizing the conventional Markov chain are given in Bocksell (2004).

Fig. 7 contains the results for the Std = 10�4 particles at the last collection plane, x/d = 15, such that t� sK

for the fluid-tracer and finite-inertia drift corrections. In Fig. 7a, the concentration profiles from the diagonal
and full Reynolds-stress CRW simulations are quite close to the results from the DNS, where the full
Reynolds-stress results are slightly better. However, the simulations utilizing the isotropic normalized Markov
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chain significantly under predict the particle diffusion in the 10 < y+ < 100 region. This is reasonable since the
isotropic definition of the transverse velocity fluctuations from the kinetic energy results in an over-estimate of
the actual v0frms

values (Fig. 1c) and thus causes the particles to diffuse faster way from the wall and reduces the
near-wall concentration. These results indicate that anisotropy in a boundary layer should be included in the
Markov chain to obtain accurate near-wall results. Fig. 7b shows the same results (as expected) since the par-
ticle Stokes number is very small and the differences between the fluid-tracer and finite-inertia drift corrections
are negligible.

Fig. 8 shows the downstream concentration profiles for particles with Std = 10�1 . As the particle inertia
increases, the diffusion away from the wall is lessened so the peak (near-wall) particle concentration is
increased. In Fig. 8a the CRW simulations with the fluid-tracer drift correction significantly under-predict
the concentration profile near the wall especially at the peak concentration location compared to the DNS.
Including the finite-inertia drift correction (see Fig. 8b) dramatically improves the agreement of the CRW
simulations with the tracer drift correction to the DNS results, although there is still a slight under prediction
near the wall at the peak location. This indicates the importance of the finite-inertia effects on the drift
correction for local particle Stokes numbers of order unity. A significant improvement (though not as dra-
matic) is also seen for Std = 10�2 by Bocksell (2004), which is somewhat surprising given that its effective
Stokes number is on the order of 10�1. For both Std = 10�2 and Std = 10�1, the improvement with an aniso-
tropic turbulence model is substantial but the improvement with adding the off-diagonal terms is slight. The
results for particles with the largest Stokes number (Std = 1) appear in Fig. 9 and show the same trends but
with even more importance of the finite-inertia drift correction. Results for other streamwise locations for the
full range of particle Stokes numbers exhibited the same features as discussed by Bocksell (2004).
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3.2. Mean-square particle position

Another area of investigation was the root-mean-square of the particle location (in spanwise and transverse
directions) as a function of time. To examine the prediction of this positional variance, the best performing
technique (normalized CRW with an anisotropic diagonal and finite-inertia drift correction) was employed
as a ‘‘baseline’’ model. Spanwise diffusion is considered first since effects of inhomogeneous flow are only indi-
rect (there are no spanwise gradients in the mean and turbulence statistics). Fig. 10 shows a comparison of the
mean-square spanwise (z) diffusion of the ‘‘baseline’’ CRW simulations to the DNS. The mean-square diffu-
sion for Std = 10�4 and Std = 10�2 closely match the DNS results, especially for long times t� sK, where the
slopes approach unity, consistent with long time tracer particle diffusion in HIsT. For particles with
Std = 10�1 , the average positional root-mean-square is significantly reduced due to inertia effects (as com-
pared to the smaller Stokes number cases), but the agreement between the CRW and DNS is still reasonable,
especially at long times. The Std = 1 case yields strongly reduced spanwise diffusion even far downstream due
both to the increased inertia and the fact that the particles remain near the wall (Fig. 9b) and thus are exposed
to a much reduced w0frms

(Fig. 1c). This result is at least qualitatively found for both the DNS and CRW results
(the differences between DNS and CRW for this case are somewhat exaggerated due to the use of a log–log
plot). It should also be noted that the DNS diffusion rate (slope of these curves) is super-quadratic for this case
and this is not predicted by short-time HIsT theory, yet it is reasonably predicted with the CRW results.

Fig. 11 shows a comparison of the mean-square wall-normal (y) diffusion for the ‘‘baseline’’ CRW simula-
tions to the DNS results. In general, the initial wall-normal diffusion (CRW and DNS) is an order of magni-
tude less than the spanwise diffusion for a given time which can be attributed to the fact that v0frms
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than w0frms
near the wall (Fig. 1c). However, the transverse diffusion exhibits much steeper curves, e.g., super-

quadratic at even the longest-time periods. These mean diffusion root-mean-square values and the effective
slopes are qualitatively predicted by the CRW results but there are some significant differences. The CRW
simulation for particles of Std = 1 has the closest agreement to the DNS results, which is consistent with
the results shown for the concentration profiles, though there is a tendency to over-predict diffusion at long
times. For the other particle inertias, the CRW results tend to over-predict diffusion for intermediate times,
which was consistent with the concentration profile comparisons at locations before x/d of 15. The discrepan-
cies may be due to insufficient drift correction especially when time-scales change drastically (Fig. 2) or the
assumption of a single time and length scale of the turbulence in the buffer and near-wall regions where fun-
damental turbulent scales and physics differ substantially from the outer region. Another possible problem
could be the assumption of a Gaussian distribution for the fluctuation velocities, since Iliopoulos and
Hanratty (1999) showed that skewness and flatness (though typically not available for RANS flowfields)
can improve CRW predictions.

Finally, in order to assess the mean particle trajectory movement due to turbulence, Fig. 12 shows a com-
parison of the time-averaged, wall-normal particle velocity averaged along the particle trajectory, hvpi,
normalized by the terminal velocity, and plotted as a function of particle Stokes number. Since hvpi is always
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greater than Vterm, the net movement away from the wall is generally dominated by turbulent diffusion. This is
especially true for the tracer-like particles (Std = 10�4) for which the velocity ratio is nearly 30. However, for
the largest particles (Std = 1) the mean transverse velocity approaches the terminal velocity condition. Fig. 12a
contains the results from the CRW simulations with the tracer-particle drift correction and Fig. 12b contains
the CRW simulations with the finite-inertia drift correction; both cases also compare the isotropic and aniso-
tropic diagonal CRW models. In general, the anisotropic effect is important at all Stokes numbers while the
isotropic model consistently over-predicts the mean transverse velocity. For the anisotropic CRW simulations,
the fluid-tracer drift correction is reasonable up to Std = 10�2 (StK = 8.3 · 10�2). However, for particles with
Std = 10�1(StK = 1.2) and larger, the finite-inertia drift correction is needed and gives reasonable results.

4. Conclusions

Several CRW models were developed and tested for near-wall particle diffusion in a turbulent boundary
layer. The CRW models were based on continuous-flow Eulerian statistics derived from the DNS solution
combined with an instantaneous particle equation of motion. The integral-time scales of the continuous-phase
turbulence were found to be approximately isotropic and were reasonably approximated by the model of Kal-
lio and Reeks (1989). The particle test conditions included a variety of Stokes numbers varying from St+ of
0.27–270, while the terminal velocity was kept small so that it did not significantly affect the mean movement
of the particles. To assess the performance of the various models, the CRW results were compared to DNS
particle diffusion statistics. Thus, the DNS and CRW particle trajectories were based on continuous-phase
flows with the same Eulerian flow statistics. This consistency eliminated any differences associated with empir-
icism from turbulence modeling or uncertainties associated with experimental measurements.

The DNS concentration profiles indicated that the particle inertia strongly controlled the level of spanwise
diffusion, as small particles diffused much more rapidly than large particles consistent with homogeneous dif-
fusion theory. However, the wall-normal (transverse) diffusion was more complex and with large departures
from that expected by homogeneous diffusion. Investigation of mass conservation with fluid-tracer particles
indicated that a modified (non-dimensionalized) Markov chain was needed for the CRW model to prevent
non-physical diffusion associated with large gradients in turbulence near the wall. In addition, an incremental
drift correction for the Markov chain, which is a function of particle Stokes number, was critical to avoiding
non-physical particle collection in low-turbulence regions for particle Stokes numbers (based on the local inte-
gral turbulence time scale) on the order of unity or more.

Various level of Eulerian statistics were also tested in terms of prediction of the transverse particle concen-
tration profiles. It was found that inclusion of the full Reynolds stress tensor, especially variations in the diag-
onal elements, was important and yielded good comparison with the DNS results at a downstream location
consistent with particles traveling for several integral turbulent time-scales. Therefore, the recommended
model includes the anisotropic Eulerian turbulence statistics along with a normalized Markov chain and an
finite-inertia drift correction. However, even this model was not able to predict some of the detailed near-wall
particle root-mean-square statistics associated with transverse diffusion, suggesting that further improvement
may require non-Gaussian statistics and/or incorporation of more detailed description of the near-wall
variations in integral length- and time-scales.
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